Persamaan eksponen adalah persamaan dari bilangan eksponen dengan pangkat yang memuat sebuah fungsi, atau persamaan perpangkatan yang bilangan pangkatnya mengandung variabel sebagai bilangan peubah.
Persamaan eksponen adalah persamaan dari bilangan eksponen dengan pangkat yang memuat sebuah fungsi, atau persamaan perpangkatan yang bilangan pangkatnya mengandung variabel sebagai bilangan peubah.
Sifat – sifat persamaan eksponen sederhana banyak sifatnya, berikut ini sifat – sifat persamaan eksponen berdasarkan pangkatnya adalah :
1. Pangkat Bulat Positif (m dan n bulat positif )
2. Pangkat Nol
3. Pangkat Bulat Negatif ( n positif )
4. Pangkat Bilangan Pecahan
Contoh :
Jawab :
Substitusikan x – 5
52 – 4 > 0 dan 2 – 5 > 0 (tidak memenuhi)
Ini berarti x = 5 bukan himpunan penyelesaian.
Tidak memerlukan syarat sehingga x = 6 merupakan himpunan penyelesaian.
Substitusikan x = 4 pada f(x) dan g(x)
42 – 4 = genap dan 2 – 4 = genap
Karena keduanya genap maka x – 4 merupakan himpunan penyelesaian.
Setelah itu disubstitusikan x = -3 atau x = 2 ke dalam h(x) diperoleh h(x) ≠ 0 : h(x) ≠ 1
Ini berarti x = -3 atau x = 2 merupakan himpunan penyelesaian.
Jadi, himpunan penyelesaian persamaan di atas adalah = {-3, 2, 4, 6}
Tidak ada komentar:
Posting Komentar