Kamis, 11 Maret 2021

OPERASI VEKTOR DAN CONTOH SOALNYA

 

Vektor di R^2

Panjang segmen garis yang menyatakan vektor \bar{v} atau dinotasikan sebagai \mid\bar{v}\mid Panjang vektor sebagai:

vektor di R2

Panjang vektor tersebut dapat dikaitkan dengan sudut \theta yang dibentuk oleh vektor dan sumbu x. positif.

panjang dan rumus vektor

Vektor dapat disajikan sebagai kombinasi linier dari vektor basis \bar{l} = \binom{1}{0} dan \bar{J} = \binom{0}{1} berikut:

\bar{v} =\left(\begin{array}{r} v_1\\ v_2\end{array}\right) = v_1\left(\begin{array}{r} 1 \\ 0 \end{array}\right) + v_2\left(\begin{array}{r} 0\\ 1\end{array}\right)

\bar{v} =v_1 \bar{i} + v_2\bar{j}

panjang vektor di r2

Operasi Vektor di R^2

Penjumlahan dan pengurangan vektor di R^2

Dua vektor atau lebih dapat dijumlahkan dan hasilnya disebut resultan. Penjumlahan vektor secara aljabar dapat dilakukan dengan cara menjumlahkan komponen yang seletak. Jika \vec{a} = \left(\begin{array}{r} a_1\\ a_2\end{array}\right) dan \vec{b} = \left(\begin{array}{r} b_1\\ b_2\end{array}\right) maka:

\vec{a} + \vec{b} = \left(\begin{array}{r} a_1+b_1\\ a_2+b_2\end{array}\right)

Penjumlahan secara grafis dapat dilihat pada gambar dibawah:

penjumlahan dan pengurangan vektor

Dalam pengurangan vektor, berlaku sama dengan penjumlahan yaitu:

\bar{a} - \bar{b} = \left(\begin{array}{r} a_1-b_1\\ a_2-b_2\end{array}\right)

Sifat-sifat dalam penjumlahan vektor sebagai berikut:

  • \bar{a} + \bar{b} = \bar{b} + \bar{a}
  • \bar{a} + (\bar{b}+\bar{c}) = (\bar{a} + \bar{b}) + \bar{c}

Perkalian vektor di R^2 dengan skalar

Suatu vektor dapat dikalikan dengan suatu skalar (bilangan real) dan akan menghasilkan suatu vektor baru. Jika \bar{v} adalah vektor dan k adalah skalar. Maka perkalian vektor:

k.\bar{v}

Dengan ketentuan:

  • Jika k > 0, maka vektor k.\bar{v} searah dengan vektor \bar{v}
  • Jika k < 0, maka vektor k.\bar{v} berlawanan arah dengan vektor \bar{v}
  • Jika k = 0, maka vektor k.\bar{v} adalah vektor identitas \bar{o} = ^0_0

Secara grafis perkalian ini dapat merubah panjang vektor dan dapat dilihat pada tabel dibawah:

perkalian vektor dengan skalar

Secara aljabar perkalian vektor \bar{v} dengan skalar k dapat dirumuskan:

k.\bar{v} = \left(\begin{array}{r} k.v_1\\ k.v_2\end{array}\right)

Perkalian Skalar Dua Vektor di R^2

Perkalian skalar dua vektor disebut juga sebagai hasil kali titik dua vektor dan ditulis sebagai:

\bar{a}.\bar{b} (dibaca : a dot b)

Perkalaian skalar vektor \bar{a} dan \bar{b} dilakukan dengan mengalikan panjang vektor \bar{a} dan panjang vektor \bar{b} dengan cosinus \theta. Sudut \theta yang merupakan sudut antara vektor \bar{a}dan vektor \bar{b}.

Sehingga:

\bar{a} \cdot \bar{b} = \mid\bar{a}\mid\mid\bar{b}\mid cos\theta

Dimana:

perkalian skalar dua vektor

Perhatikan bahwa:

  • Hasil kali titik dua vektor menghasilkan suatu skalar
  • \bar{a}.\bar{a} = (\bar{a}^2)
  • \bar{a}.(\bar{b}+ \bar{c}) = (\bar{a} . \bar{a}) + (\bar{a} . (\bar{c})

Tidak ada komentar:

Posting Komentar